

1 **Title:** Achieving deep cuts in the carbon intensity of US automobile transportation by 2050:
2 Complementary roles for electricity and biofuels
3

4 **Authors:** Corinne D Scown^{1*}, Michael Taptich², Arpad Horvath², Thomas E McKone^{1,3},
5 William W Nazaroff²
6

7 ¹Environmental Energy Technologies Division, Lawrence Berkeley National Laboratory,
8 University of California, Berkeley, California 94720, United States
9

10 ²Department of Civil and Environmental Engineering, University of California, 760 Davis Hall,
11 Berkeley, CA 94720, United States
12

13 ³School of Public Health, University of California, 50 University Hall, Berkeley, CA 94720,
14 United States
15

16 **Abstract**

17 Passenger cars in the United States (US) rely primarily on petroleum-derived fuels and

18 contribute the majority of US transportation-related greenhouse gas (GHG) emissions.

19 Electricity and biofuels are two promising alternatives for reducing both the carbon intensity of

20 automotive transportation and US reliance on imported oil. However, as standalone solutions,

21 the biofuels option is limited by land availability and the electricity option is limited by market

22 adoption rates and technical challenges. This paper explores potential GHG emissions

23 reductions attainable in the US through 2050 with a county-level scenario analysis that combines

24 ambitious plug-in hybrid electric vehicle (PHEV) adoption rates with scale-up of cellulosic

25 ethanol production. With PHEVs achieving a 58% share of the passenger car fleet by 2050,

26 phasing out most corn ethanol and limiting cellulosic ethanol feedstocks to sustainably produced

27 crop residues and dedicated crops, we project that the US could supply the liquid fuels needed

28 for the automobile fleet with an average blend of 80% ethanol (by volume) and 20% gasoline. If

29 electricity for PHEV charging could be supplied by a combination of renewables and natural-gas

30 combined-cycle power plants, the carbon intensity of automotive transport would be 79 g CO₂e

31 per vehicle-kilometer traveled, a 71% reduction relative to 2013.

32 **Introduction**

33

34 Deep cuts to greenhouse gas (GHG) emissions from all sectors of the economy are needed to

35 stabilize the global climate. Decarbonizing automotive transportation during the coming decades

36 is challenging because of the need for portable, safe, and affordable energy storage in the form of

37 batteries or an energy-dense liquid fuel. Current US passenger cars rely almost entirely on

38 petroleum.¹ Passenger cars make up the single largest share of all transportation-related GHG

39 emissions in the US, releasing 758 Tg/y of CO₂e in 2010.² To meet GHG emissions reduction

40 goals will require both reductions in vehicle-kilometers traveled (VKT) and decarbonization of

41 fuels.³⁻⁵

42

43 Electricity derived from low-GHG sources and biofuels are two promising options for achieving

44 GHG intensity reductions in transportation. However, both have drawbacks that make them

45 undesirable standalone replacements for conventional fuels. Electrification of transportation

46 must overcome limited vehicle battery capacity, incomplete charging infrastructure, lengthy

47 charging times, and the need for significant reductions in the carbon intensity of electricity

48 generation.³ Biofuels' potential scale is constrained by the availability of essential inputs:

49 agricultural land, crop residue, and other biomass.⁶ However, used together, electricity and

50 biofuels have the potential to complement one another. Electricity could supply the majority of

51 daily fuel demand through the use of plug-in hybrid electric vehicles (PHEVs), while biofuels

52 could fuel long trips or travel in areas with insufficient charging infrastructure.

53

54 To explore the combined use of electricity and biofuels to substantially reduce GHG emissions

55 from the private automobile fleet in the US, we have developed an ambitious yet achievable US

56 county-level scenario extending to 2050 for both PHEV deployment as well as bioethanol
57 production. County-level resolution permits an exploration of how regional differences in PHEV
58 market adoption and driving behavior would shift electricity and liquid fuel demand. Utilizing
59 predictions of regional PHEV market penetration, population changes, vehicle efficiency
60 improvements, and driving patterns, we estimate how both electricity demand and liquid fuel
61 demand for automobile transportation could evolve in the United States through 2050. We then
62 model how biomass-derived fuel and additional electricity generation capacity could meet major
63 components of the overall demand. We assess the resulting impact on GHG emissions and
64 perform a sensitivity analysis around key assumptions.

65
66 **Background and Motivation**
67

68 The need for a portfolio of technologies, rather than a “silver bullet,” to reduce GHG emissions
69 and fossil fuel dependence is well recognized.⁴ Nevertheless, an individual technology is often
70 assessed on the basis of whether it can alone achieve environmental goals for a particular sector.
71 Wedge analysis has become a popular method for creating multi-technology scenarios that
72 achieve a particular GHG reduction goal.^{3,4} This approach emphasizes the end-state of societal-
73 scale transformations, neglecting feasible market penetration rates and the extent to which
74 different technologies interact as they scale up, either facilitating or inhibiting one another. In
75 particular, wedge analysis is not well suited to consider the large spatial heterogeneities of
76 feasibility, scale-up, and adoption. These nuances are particularly important in assessing
77 passenger transportation, where consumer adoption of new vehicle technologies, availability of
78 supporting infrastructure, and driving behavior strongly influence the potential contributions of
79 alternative fuels, such as electricity, biofuels, compressed natural gas (CNG), and hydrogen.

80

81 Many recent studies have developed high-level scenarios aimed to achieve significant GHG
82 emissions reductions from the transportation sector in the next 20-40 years.^{3,4,7-13} With the
83 exceptions of Yeh et al.¹² and Kromer et al.⁹, each starts from a climate- or policy-motivated
84 target and develops scenarios that meet the goal without grounding their assumptions in market
85 adoption rates of vehicle technologies. None of the cited studies include US regional variation
86 across scenarios, which could affect technology adoption rates, driving behavior, electric grid
87 mixes, and differences in ethanol blend walls. Each of these factors could affect total energy use
88 and GHG emissions.

89

90 As highlighted in Williams et al.³, substantial electrification of transportation paired with carbon
91 emissions reductions in the electricity sector is essential for achieving the 2050 climate
92 stabilization goal of GHG emissions 80% below 1990 levels, as proposed for California. It is
93 improbable that US automotive transportation could become fully electrified within the next four
94 decades because of limitations in fleet turnover and the pace of battery performance
95 improvements and cost reductions. Over that period, liquid fuels that combine gasoline with
96 lower-carbon alternatives will provide most of the energy for private automobile transportation.
97 Liquid biofuels, especially “drop-in” biofuels, are an attractive option because they require
98 minimal new storage and distribution infrastructure relative to gaseous fuels, and because they
99 can be used in spark-ignited engines with minor modifications. Biofuels are currently produced
100 almost entirely from sugar, starch, and fats, placing them in competition with food production.¹⁴
101 Significant momentum is building toward delivery of meaningful quantities of second-generation
102 biofuels derived from lignocellulosic feedstocks. Fuels produced from lignocellulosic biomass

103 provide an opportunity to avoid or minimize the impact on food prices by utilizing crop residues
104 and high-yield biomass crops that can be grown on marginal land.¹⁵

105

106 Lignocellulosic biomass' inherent recalcitrance to chemical, biological, and physical
107 deconstruction makes its conversion to useful fuel more challenging and costly than "first
108 generation" feedstocks such as corn grain and cane sugar. Of the possible gasoline replacements
109 resulting from lignocellulosic biomass conversion, ethanol appears most likely to be viable for
110 commercial scale-up in the next few decades, although bio-based drop-in hydrocarbon fuels are
111 drawing intense research interest and may eventually become economically attractive.¹⁶ Ethanol
112 is currently blended into gasoline at levels up to 10% by volume (E10). (It makes up a smaller
113 fraction of total energy due to its lower volumetric energy content.) The US Environmental
114 Protection Agency (EPA) recently approved the use of ethanol blends up to 15% by volume
115 (E15) in light-duty vehicles from model years 2001 and later.¹⁷ Ethanol-gasoline blends of up to
116 85% ethanol by volume (E85) can be used in flex fuel vehicles (FFV), which currently cost only
117 \$100-300 more to produce than conventional vehicles.¹⁸ In contrast, the additional cost of a
118 CNG/gasoline bi-fuel vehicle can be on the order of \$10,000, and the cost of hydrogen fuel-cell
119 vehicles (HFCV) plus the hydrogen distribution infrastructure is much higher.^{19, 20}

120

121 **Methods**

122

123 The scenario presented in this paper is based on a bottom-up approach that uses consumer
124 adoption of PHEVs and the scale of cellulosic ethanol production as the main limiting factors in
125 decarbonizing automotive transportation. Based on studies that address charging infrastructure
126 development, median household income, and relevant policy mandates or incentives, we have
127 developed a county-level PHEV adoption scenario that extends to 2050. To ensure that PHEVs

128 can be substituted for conventional vehicles as functional equivalents, we focus our analysis on
129 passenger cars, excluding sport-utility vehicles (SUVs) and light trucks. Per-capita VKT, trip
130 length, and expected fuel efficiency improvement data allow us to estimate the net change and
131 geographic shifts in transportation-related electricity and liquid-fuel demand. To assess the
132 likely reduction in reliance on gasoline, we estimate the quantity of Miscanthus, corn stover, and
133 wheat straw available for conversion to fuel and compare the resulting volume of ethanol with
134 the quantity of ethanol necessary to replace all conventional gasoline used for passenger
135 automobiles with E85. The resulting lifecycle GHG emissions are calculated on both a fleet-
136 total and per-VKT basis using a range of electricity mixes.

137
138 *PHEV deployment scenario*
139

140 Our PHEV deployment scenario builds on the baseline scenario provided by the Energy
141 Information Administration's (EIA) 2012 Annual Energy Outlook, which provides projections
142 for new car sales and fuel economy improvements through 2035. Sales are disaggregated into
143 nine geographic regions and fourteen vehicle types (see Supporting Information).²¹ We have
144 extended these projections to 2050 by assuming sales grow proportionally with regional
145 population.²² Population projections through 2050 are based on the 2010 RPA Assessment
146 County Level Projections for Scenario A1B.²³ The 2012 EIA projections are conservative in that
147 they tend to correspond to a "business as usual" approach that holds alternative fuel vehicles at a
148 negligible share of total passenger car sales. In contrast, our scenario predicts a much more
149 aggressive deployment of PHEVs. To incorporate these PHEV projections into the EIA baseline
150 scenario, we hold total vehicle sales equal to EIA-projected values and assume that projected
151 PHEV sales will displace what would otherwise be conventional gasoline vehicle sales. Diesel,
152 CNG, EV, and HFCV sales projections in the EIA scenario remain unchanged.

153

154 Historical fuel economy data through 2008 are from the US Bureau of Transportation Statistics.

155 ²⁴ Data for new vehicles purchased between 2009 and 2012, as well as projections out to 2035,

156 are from the 2012 EIA Annual Energy Outlook. ²⁵ Since the EIA fuel economy projections are

157 essentially linear in the long term, 2036-2050 estimates are based on the slope from the 2025-

158 2035 EIA projections. We adjusted fuel economy data down by 15% to account for the shortfall

159 between fuel economy ratings and actual efficiency achieved by typical drivers. ²⁶

160

161 Market adoption projections, while subject to large uncertainties, are necessary to ensure that

162 scenarios are constrained by appropriate fleet turnover rates and typical consumer adoption

163 patterns. Upfront cost reductions, policy incentives, fuel prices, consumer purchasing power,

164 and infrastructure development all contribute to the speed of adoption. Logistic functions, and

165 particularly sigmoid functions, are frequently used to simulate market adoption patterns.

166 Sigmoid functions model three stages: slow initial adoption, more rapid growth as the

167 technology's costs are lowered through economies of scale and learning curves, and finally

168 slower growth as the technology approaches market saturation. PHEV market adoption curves

169 produced by detailed agent-based models and general equilibrium models have been found to

170 resemble sigmoid functions. ^{27,28} We use a sigmoid function to estimate PHEVs' growing share

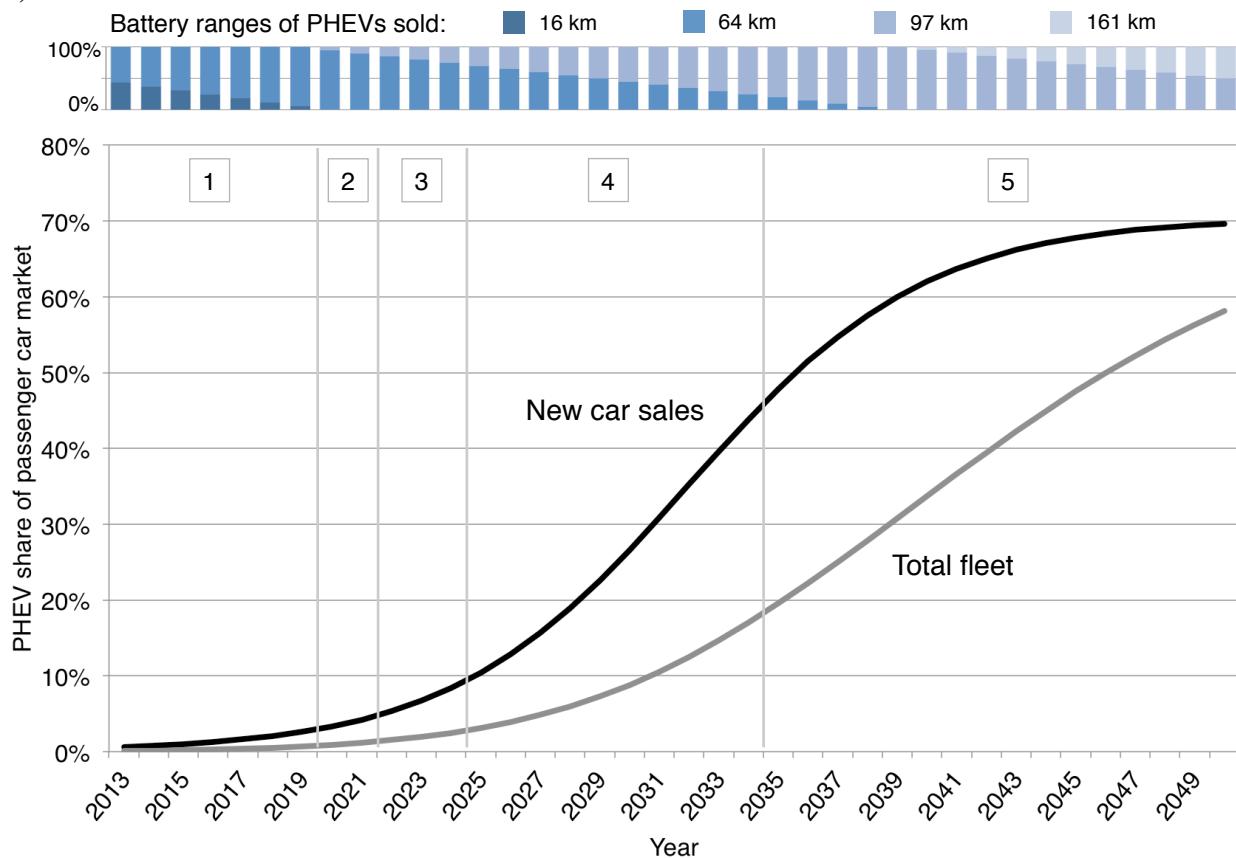
171 of total new car sales beginning in 2013 and ending in 2050 (see Figure 1a). As applied, this

172 function returns a fraction that, when multiplied by total sales for a given year, yields the total

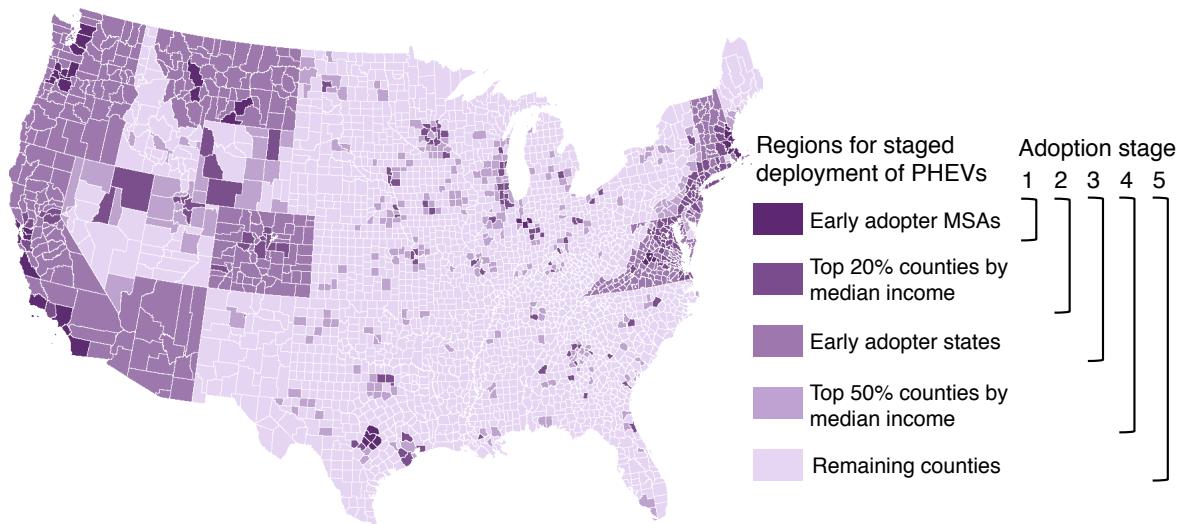
173 PHEV sales in that year. The base scenario assumes attainment of a 2050 goal of 70% sales

174 penetration, based on results from the MIT Emissions Prediction and Policy Analysis (EPPA)

175 general equilibrium model presented in Karplus et al. ²⁷, which assumes that PHEVs cost 30%


176 more than their traditional internal combustion engine counterparts and that the US enacts
177 legislation aimed at stabilizing atmospheric CO₂ at 450 ppm. These fleet penetration results are
178 slightly below the “Medium” PHEV adoption scenario presented by the Electric Power Research
179 Institute (EPRI) ²⁹. Figure 1a depicts our basic assumptions about the battery ranges of vehicles
180 sold in each year, beginning with a roughly equal split between 16 km (10 mi) and 64 km (40 mi)
181 ranges in 2013 and gradually transitioning to a split between 97 km (60 mi) and 161 km (100 mi)
182 ranges in 2050. Details are provided in the Supporting Information.

183


184 In addition to its temporal dimension, PHEV market adoption will vary regionally. Previous
185 research has indicated that income, commitment to environmentalism, high occupancy vehicle
186 (HOV) lane incentives, and gasoline prices impact HEV adoption rates.³⁰ PHEVs also have an
187 infrastructure component: drivers may be more likely to purchase a PHEV if they have ready
188 access to charging infrastructure at home and in their community. To capture these differences,
189 the period between 2013 and 2050 is separated into five phases: (1) beginning with early adopter
190 cities, (2) adding the top 20% of counties by median income, (3) including early adopter states,
191 (4) expanding to the top 50% of counties by median income, and (5) finally including the entire
192 continental United States (shown in Figure 1b). The Supporting Information contains source
193 data for each group. Each county is capped at an 80% PHEV share of passenger vehicle sales to
194 allow for baseline growth in sales of diesel, HFCVs, CNG cars, and other alternative fuel
195 vehicles as defined by the EIA Annual Energy Outlook. Many later-adopting counties do not
196 reach this 80% cap by 2050.

197

198 a)

199
200 b)

201
202 Figure 1: a) Plug-in hybrid vehicle sales curve, resulting fleet penetration, and distribution of
203 battery ranges by sales year; b) Adoption of PHEVs by region, with numbered adoption stages
204 corresponding to growth phases in (a)
205

206

207
208 *Driving behavior*
209
210 Driving behavior influences automotive energy use. Total VKT driven per year determines the
211 energy required, and typical trip lengths influence the fraction of the distance driven in a PHEV
212 that can be powered by battery. Empirically, annual VKT is not constant, but rather declines (on
213 average) with a car's age. Equation S3 is used to model this relationship for our scenario: new
214 cars are driven 26,000 km (16,000 mi) in their first year and shorter distances in each subsequent
215 year. More detail is provided in the Supporting Information. Nationwide VKT by light-duty
216 motor vehicles increased by 34% between 1990 and 2010.² Future changes will depend on
217 population growth, patterns in urban development, fuel prices, and general economic conditions.
218 Our calculations project a 65% increase in total fleet VKT per year between 2013 and 2050.
219 This result is partially attributable to a 34% projected increase in total US population.²³ The
220 remaining change reflects a projected increase in annual per-capita VKT of 23%. For
221 comparison, the CA-TIMES model incorporates an expected 37% increase in per-capita VKT in
222 California between 2010 and 2050.³¹
223
224 Transportation infrastructure in a given region influences residents' driving behavior. We use
225 the 2009 National Household Transportation Survey trip-length data to develop county-level
226 estimates of the fraction of total daily VKT that can be driven in all-electric mode for batteries
227 ranging from 16- to 161-km ranges. Drivers are assumed to start the day with a full charge and
228 operate their PHEVs in charge-depleting mode, switching to charge-sustaining mode once the
229 battery is depleted. The assumption that vehicles are only charged once per day could result in
230 an underestimate of the distance driven in all-electric mode if, for example, drivers are able to
231 charge at both home and work. Weighted by population, the national averages of VKT powered

232 by electricity for 16-km, 32-km, 48-km, 64-km, 97-km, and 161-km ranges are 24%, 42%, 54%,
233 63%, 76%, and 93%, respectively (see Supporting Information). We assume that liquid fuels
234 provide the remaining energy.

235

236 *Cellulosic ethanol production scenario*

237 The total quantity of biomass that can be feasibly utilized for fuel production and the issue of
238 whether current corn ethanol should be part of a future biofuel mix are both hotly debated topics.
239 We assume that corn ethanol production will be held constant at current levels until the blend
240 wall becomes a limiting factor, at which point corn ethanol will be phased out in favor of
241 cellulosic ethanol. We assume that cellulosic ethanol will be produced from a combination of
242 corn stover, wheat straw, and dedicated *Miscanthus* crops. Corn stover and wheat straw
243 comprise the majority of herbaceous crop residue in the US. *Miscanthus* is considered one of the
244 most promising options as a high-yield, low-input (fertilizers, biocides, irrigation water),
245 dedicated biomass crop.^{15,32} Potential biomass sources are screened based on their access to
246 transportation infrastructure and proximity to enough other biomass to justify a commercial-scale
247 biorefinery. This approach provides a spatially explicit mapping of how cellulosic ethanol
248 production can be scaled up to satisfy liquid fuel demands in a partially electrified passenger
249 transportation system.

250

251 *Miscanthus* availability is based on a land conversion scenario presented in Scown et al.⁶ that
252 prioritizes conversion of Conservation Reserve Program (CRP) land, followed by the lowest-
253 value cropland available within the appropriate growing region, excluding drought-prone
254 regions. This *Miscanthus* scenario achieves a target ethanol production of 40 billion liters per

255 year. Corn stover and wheat straw availability are based on estimates from the US DOE *Billion-*
256 *Ton Update* report, which accounts for regional variations in sustainable crop residue removal
257 rates and temporal changes in these rates as farming practices evolve.³² Perlack and Stokes³²
258 project increases in biomass availability by farm gate price through 2030. We assume that any
259 biomass priced below \$60/metric ton is available for conversion, which is equal to the break-
260 even cost of producing Miscanthus when the opportunity cost of farmland is included.³³ Because
261 there is likely to be a lag between biomass availability increases and resulting increases in
262 biorefining capacity, we consider biomass availability in 2030 to be a reasonable predictor of
263 biorefining capacity in 2050. Total biomass availability is presented in Figure S2a in the
264 Supporting Information. Biomass-producing counties without sufficient access to rail
265 infrastructure are eliminated from the scenario (see Supporting Information).³⁴

266

267 We use biomass availability to run a biorefinery site-selection analysis in ArcGIS. Candidate
268 biorefinery locations are established at county centroids and screened based on their proximity to
269 sufficient biomass supply and transportation infrastructure. Through location-allocation network
270 analysis in ArcGIS, we identified 107 county centroids as optimal biorefinery locations in 2050.
271 Between 2013 and 2050, we assume that total cellulosic ethanol production grows linearly and
272 that all established biorefineries continue to operate through 2050. Biorefinery locations are
273 shown in Figure S2b in the Supporting Information, along with the rail paths required to
274 transport biomass to each one. The resulting utilization is 80% of the original 320 million metric
275 tons (20% moisture content) available in our biomass production scenario. Biomass
276 transportation distances are calculated based on ArcGIS closest facility network analysis,
277 yielding a weighted average of 75 km. Because this process identifies optimal routes, closest

278 facility analysis may underestimate true distances traveled.³⁵ The influence on the final results
279 is minimal.^{6,35}

280
281 Total cellulosic ethanol production sums to 1.4 trillion MJ (60 billion liters), which travels an
282 average of 515 km to fueling stations if all US fuel terminals are ethanol-equipped. The addition
283 of corn ethanol, which is assumed to remain at 0.5 trillion MJ (21 billion liters) of annual
284 consumption by passenger cars until being gradually phased out starting in 2045, brings domestic
285 ethanol supply to 100% of projected E85 blending capacity in gasoline after accounting for
286 geographic and seasonal variations in blend walls (see Supporting Information). Note that total
287 US corn ethanol production is higher, totaling to 1.2 trillion MJ, but only a fraction of that is
288 used in passenger cars. Rail paths from biorefineries to blending terminals are shown in Figure
289 S2c and highway paths from terminals to county centroid are shown in Figure S2d in the
290 Supporting Information.

291
292 *Lifecycle greenhouse gas inventory*
293
294 To gauge potential GHG reductions, it is important to capture both the tailpipe and upstream
295 GHG emissions associated with transportation fuels. In some cases, these emissions are fairly
296 well understood, but some fuel production/use pathway emissions are subject to significant
297 uncertainty. Gasoline and diesel lifecycle GHG footprints do not vary substantially in the
298 literature, while biofuel and electricity GHG footprints depend on many embedded assumptions.
299 ^{36,37} For fuels whose lifecycle GHG emissions are less variable, including gasoline, diesel, corn
300 grain ethanol, CNG, liquefied petroleum gas (LPG), and hydrogen, we rely on results from the
301 Argonne National Laboratory GREET fuel cycle model.³⁸ GREET may underestimate the long-
302 term GHG footprint of gasoline and diesel if oil becomes more energy-intensive to extract and

303 process, which would slightly increase our GHG results.³⁹ Vehicle manufacturing emissions are
304 not included in our life-cycle assessment. We note that although there can be differences in
305 energy inputs and carbon emissions associated with the manufacturing process of different
306 vehicles, the difference between a conventional vehicle and a PHEV, normalized over the
307 vehicles' lifetimes, is relatively small.⁴⁰

308

309 Data sources and assumptions for each fuel pathway are shown in Table S2. Because our
310 scenario does not include any increase in corn grain ethanol production, and because we limit
311 conversion of land for dedicated biomass crops to CRP and marginal land, we exclude indirect
312 land use change (iLUC) impacts resulting from land conversion. Potential iLUC factors are
313 included as part of the sensitivity analysis. There is significant uncertainty in direct land use
314 change emission estimates for dedicated biomass crops based on soil type and farming practices,
315^{6,41} which are addressed in the sensitivity analysis as well. Even at the high end of ranges for
316 iLUC and direct land use change effects, all of the cellulosic ethanol included in our scenario
317 meets the GHG-intensity requirements to qualify for the US Renewable Fuel Standard mandate.
318 Electricity and cellulosic ethanol are the two transportation energy sources for which GHG
319 footprints are both highly uncertain and important to determining the overall GHG-intensity of
320 the scenario presented here. The electric grid is likely to change dramatically between now and
321 2050 owing to the significant number of coal-fired power plants nearing retirement, declining
322 costs for renewable energy options, growing availability of natural gas from hydraulic fracturing,
323 and the associated recent decrease in natural gas prices.^{42,43} The increase in electricity demand
324 projected to occur under our scenario, in addition to baseline non-transportation-related growth,
325 will require construction of significant new electric generating capacity. An increase in the share

326 of electricity generated by natural gas is likely owing to increased utilization of shale gas.
327 Depending on the fate of national carbon emissions reduction policies, expanded gas use may be
328 accompanied by an increase in renewables such as wind and solar. To address such
329 uncertainties, we assume that the additional electricity generated to meet the needs of charging
330 vehicles will range from 100% natural gas-fired power plants similar to those operating today
331 (42% efficiency) to 100% renewables. Because renewables have lifecycle GHG emissions
332 associated with the material and construction energy inputs, we use a wind farm case study as
333 documented by Pacca and Horvath ⁴⁴ and normalized over the turbines' 20-year lifespan to
334 estimate these emissions.

335

336 To meet transportation energy demand not satisfied by electricity, we assume that cellulosic
337 ethanol is produced from three feedstocks: corn stover, wheat straw, and Miscanthus. For
338 dedicated Miscanthus crops, we use the long-term "Scenario 6" presented in Scown et al. ⁶,
339 where soil carbon is assumed to have reached equilibrium (or near equilibrium). For crop
340 residues such as corn stover and wheat straw, assigning environmental impacts to coproducts is a
341 contentious allocation issue within the lifecycle assessment community. ⁴⁵ Where possible, we
342 use system expansion, which is the preferred method in the ISO 14044 standards for performing
343 life-cycle assessment. ⁴⁶ In the case of crop residues, we assign baseline cultivation impacts to
344 the primary food products. Additional harvesting energy use and fertilizer application required
345 for residue recovery are allocated to the crop residues. All three feedstocks are converted to
346 ethanol via dilute acid pretreatment, enzymatic hydrolysis, and fermentation. During this
347 conversion process, lignin and other solids that cannot be converted to fuel can be burned onsite
348 to produce process heat and electricity. ⁴⁷

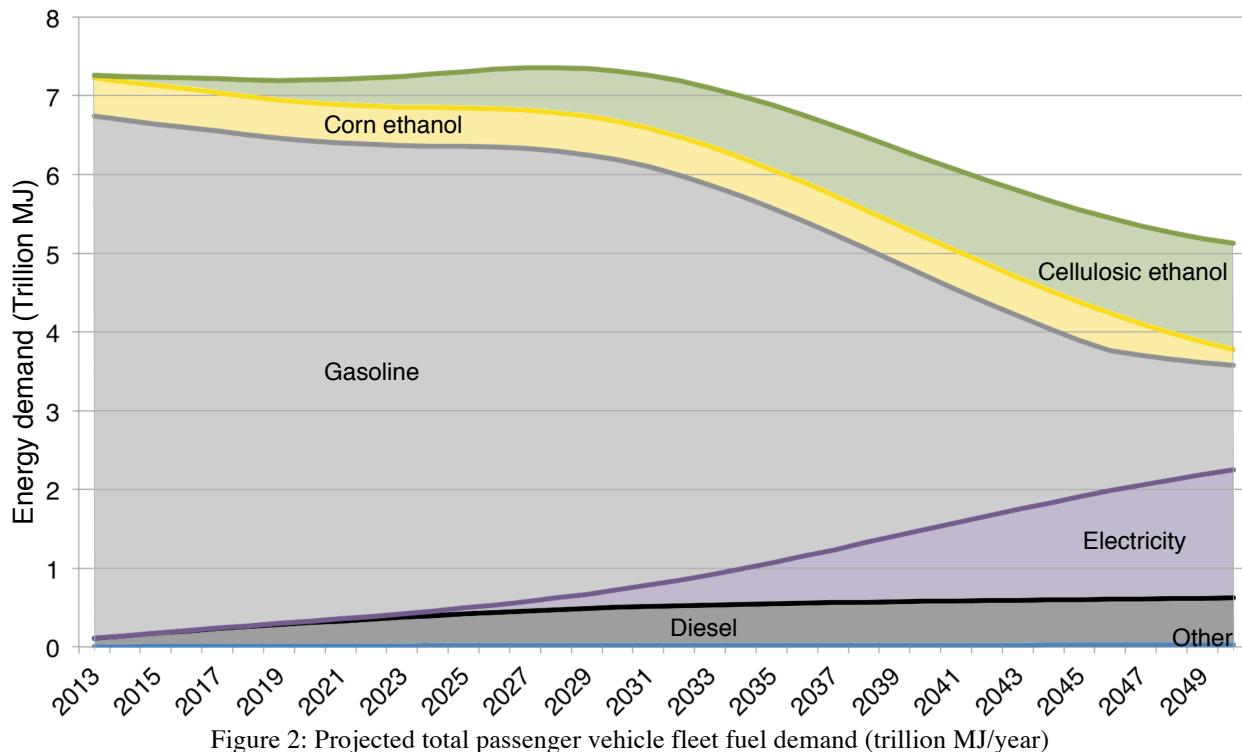
349

350 **Results**

351

352 *Electricity and liquid fuel demand for PHEVs*

353


354 The scenario is based on historical and projected future vehicle sales, expected annual VKT by
355 vehicle age, and vehicles' average fuel economy by model year. Results correspond to a total
356 passenger car fuel consumption of 7.3 trillion MJ in 2013, as shown in Figure 2. In 2010, total
357 fuel consumption by passenger cars was estimated at 260 billion liters or 8.0 trillion MJ,
358 assuming an average mix of 10% ethanol and 90% gasoline.¹ After a period of sustained
359 growth, automotive fuel consumption peaked in 2005 and has declined each year through 2010;
360 this decline of 13% over 5 years is largely attributed to the economic recession and rising fuel
361 costs. If the decline continues through 2013, we expect our estimate to be fairly consistent with
362 real-world data.

363

364 Figure 2 shows that, despite projected population and per-capita VKT growth, gasoline demand
365 decreases substantially. Subsequent to 2010, Figure 2 shows that our estimate of corn ethanol
366 use remains at a constant level until the blend wall begins to limit ethanol demand in 2045, at
367 which point corn ethanol is phased out in favor of cellulosic ethanol. Diesel experiences some
368 growth, and gasoline use declines as alternative fuel production grows. Unlike electricity for
369 PHEVs, flex-fuel technology adoption is not likely to be the limiting factor in cellulosic ethanol
370 production increases. Rather, production will be limited by how fast production costs decline
371 and the rate at which commercial-scale facilities can be sited and built. We assume that flex-fuel
372 technology will also be implemented in PHEVs. Here, we make the assumption that growth
373 occurs linearly, reaching maximum production as calculated in the cellulosic ethanol scenario by
374 2050. Despite ambitious projections for PHEV market penetration, we estimate that electricity's

375 share of total energy demand grows slowly until 2030. Total energy demand decreases as
376 electricity demand increases because electric motors' efficiency is much higher than that of internal
377 combustion engines. Scale-up of cellulosic ethanol is important to achieving short-term GHG
378 emissions reductions. Although the scale of ethanol production is constrained, because of the
379 significant contributions of electricity to total demand, this scenario reaches the maximum
380 volume that can be absorbed by an E85-dominated market.¹⁷ Though outside the scope of this
381 study, additional GHG emissions reductions can be achieved if bio-based diesel substitutes are
382 brought to market at a large scale.

383

384

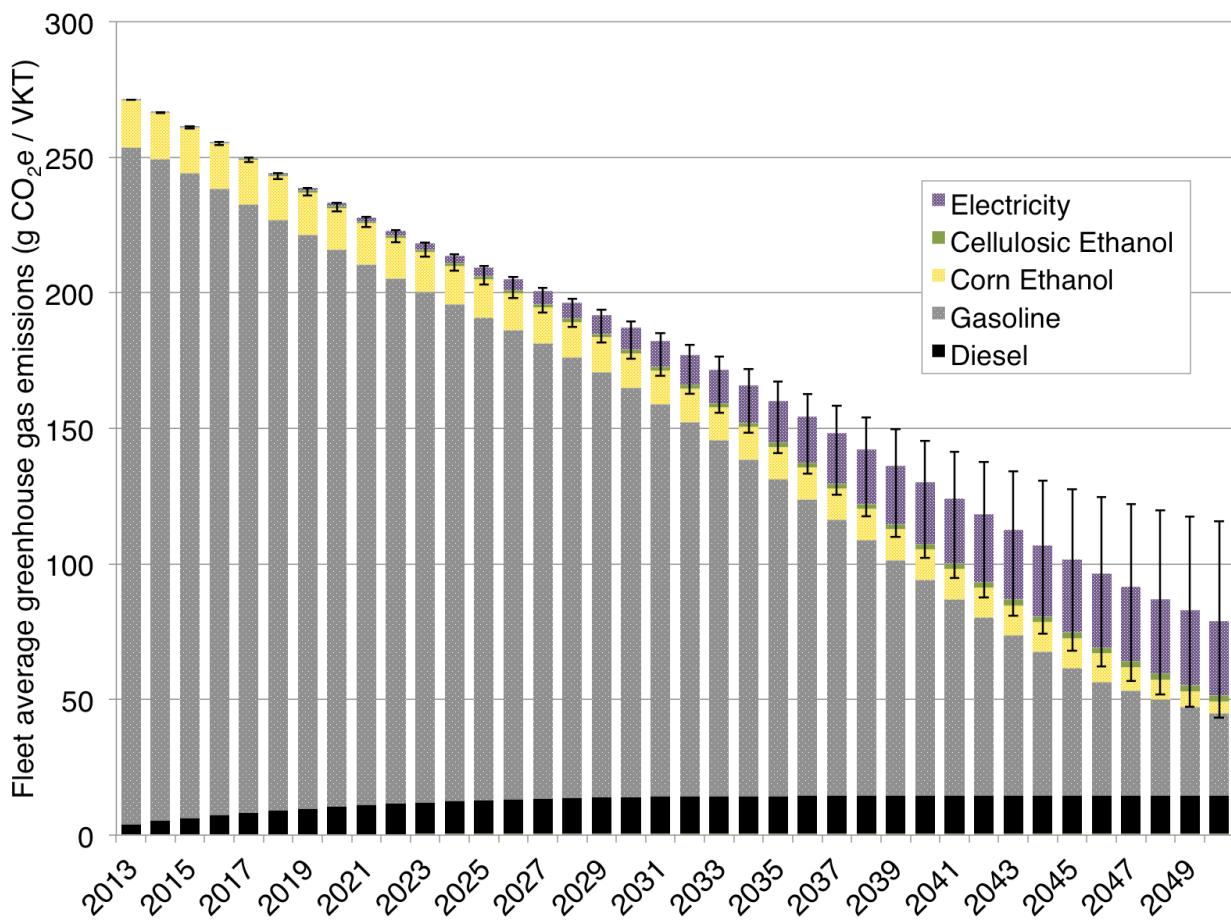
385

386

387

388

389


390

In addition to estimating the total quantities of fuels required by the passenger vehicle fleet, understanding regional changes in electricity demand offers important insight needed to assess how PHEV deployment will impact the electricity grid. Disaggregating by region provides insight into what renewable resources are available to meet this future demand. Figure S3 in the

391 Supporting Information shows the calculated changes in 2050 electricity demand relative to 2009
392 demand as a result of the increased demand for electrical energy for vehicle charging. This
393 result does not include electricity demand increases resulting from economic and population
394 growth. The largest increases in power demand occur in the West (16%) and Northeast (17%).
395 The western United States has significant solar, hydropower, and biomass power potential and
396 both regions can install substantial offshore wind capacity.⁴⁸

397
398 *Lifecycle greenhouse gas emissions*
399
400 Figure 3 presents estimated reduction in the GHG-intensity of passenger vehicles based on EIA-
401 projected fuel economy improvements and further reduction in gasoline use in favor of cellulosic
402 ethanol and electricity. We note that, based on the PHEV penetration and biofuel production
403 levels included in our scenario, this reduction is roughly linear. Fleet average GHG-intensity
404 reaches 79 g CO₂e/VKT by 2050, a 71% decrease from 2013 levels. The error bars reflect
405 variability in emissions from cellulosic ethanol production and electricity generation. The
406 average case for electricity represents a grid mix beginning as the current natural gas power plant
407 fleet in 2013, decarbonizing linearly until 2050, at which point a mix of 50% renewables and
408 50% natural gas combined cycle (NGCC) power plants supplies the marginal source of
409 electricity for vehicle charging. At the upper bound of the error bars, natural gas-fired power
410 plants with efficiencies comparable to those operating today will supply 100% of the power for
411 vehicle charging, and at the lower bound renewables are able to supply all the power demanded
412 by PHEVs. For cellulosic ethanol, the lower bound represents a scenario in which Miscanthus
413 crops planted on formerly tilled cropland are still sequestering carbon, as represented by “Short
414 Term Scenario 6” in Scown et al.⁶ The period before degraded soils planted with Miscanthus or
415 other carbon-sequestering plants reach carbon sink capacity is uncertain, but estimated to be on

416 the order of 20-50 years.⁴⁹⁻⁵¹ As a result of the uncertainty in soil carbon fluxes and electricity
 417 sources, the 2050 carbon intensity could range from 45 to 120 g CO₂e/VKT. Figure S4 shows
 418 total GHG emissions for the passenger vehicle fleet between 2013 and 2050. Total fleet GHG
 419 emissions are reduced by 52%. The larger reduction in per-VKT GHG-intensity highlights the
 420 importance of efforts to reduce per-capita VKT in parallel with efforts to decarbonize
 421 transportation fuels.

422
 423 Figure 3: Passenger car fleet average greenhouse gas intensity of passenger transportation. Contributions from
 424 CNG, LPG, and hydrogen are negligible, and not visible in this chart. Error bars reflect variability in emissions
 425 from cellulosic ethanol production and electricity generation.
 426

427 Table 1 explores the sensitivity of 2050 fleet-wide energy use and GHG emissions results to
 428 variations on some of the simplifying assumptions built into our analysis. A less aggressive
 429 PHEV adoption curve, where total sales penetration in each year is reduced by 20%, causes the

430 results to differ substantially: 31% increase in primary fuel demand, 19% reduction in electricity
 431 demand, and 24% increase in GHG emissions. Slowing the flex-fuel vehicle adoption rate such
 432 that only 75% of cars are flex-fuel in 2050 has a less dramatic influence, resulting in a 5%
 433 increase in GHG emissions. Accounting for potential variation in charging patterns and trip
 434 lengths, we vary the fraction of total VKT driven on PHEV batteries of different ranges by 20%,
 435 which results in only a 2% difference in GHG emissions, but larger differences in primary fuel
 436 and electricity demand. Including iLUC factors, assuming that dedicated biomass crops are
 437 expanded at the expense of fuel crops, causes total GHG emissions to increase by 9%.

438
 439 Table 1: Sensitivity analysis for selected parameters and resulting change in total fleet energy use and emissions

Simplifying assumption	Variation	2050 primary fuel demand	2050 electricity demand	2050 GHG emissions
Aggressive PHEV adoption curve	• 20% reduction in adoption rate for all years	+31%	-19%	+24%
Real-world fuel economy shortfall of 15%	• Shortfall increases to 20% due to increasing congestion • Shortfall decreases to 10% due to improved technology	+6% -6%	+6% -6%	+8% -7%
Battery ranges for new PHEVs sold in 2013 split between 16-km and 64-km range, increasing to a split between 97-km and 161-km range by 2050	• 100% of new PHEVs sold with 64-mi batteries for all years after 2020	+9%	-19%	+2%
Fraction of VKT per vehicle driven on the battery for each range calculated assuming once-a-day charging	• Share of VKT driven on the battery increases by 20% for all ranges • Share of VKT driven on the battery decreases by 20% for all ranges	-7% +9%	+15% -19%	-2% +2%
100% flex-fuel vehicle adoption by 2050	• 75% flex-fuel vehicle adoption by 2050	No change	No change	+5%
Electricity carbon intensity in 2013 corresponds to that of existing natural gas power plants and decreases linearly, reaching 50% NGCC, 50% renewables by 2050	• 100% of electricity supplied by natural gas power plants comparable to existing plants • 100% of electricity supplied by renewables	No change	No change	+49% -35%
Soil carbon reached equilibrium for dedicated biomass crops	• Dedicated biomass crops still sequestering carbon to the soil	No change	No change	-10%
No indirect land use change (iLUC) impacts resulting from growth in dedicated biomass crops	• iLUC factor equal to CA Air Resources Board factor of 30 gCO ₂ e / MJ applied to dedicated biomass crops	No change	No change	+9%

440

441

442 **Discussion**

443

444 Through a detailed analysis with high geographic resolution (county-level), we have presented
445 and evaluated a feasible path to substantial carbon emissions reductions in the passenger-vehicle
446 transportation sector for the US. Accounting for regional differences in population growth,
447 market adoption rates, driving behavior, and proximity to potential biofuel production makes
448 possible a more informed understanding of how demands on energy resources and infrastructure
449 may shift in coming decades. This level of geospatial disaggregation also sets the stage for more
450 robust predictions of possible human health and other highly localized impacts from different
451 transportation energy strategies.^{52,53}

452

453 The scenario analysis presented here highlights the fact that the US vehicle fleet is more likely to
454 achieve substantial carbon emissions reductions with a portfolio approach that includes both
455 liquid fuel substitutes and new vehicle technologies. This result arises because the pace at which
456 alternative vehicles can penetrate the market is limited by fleet turnover rates and the willingness
457 of consumers to adopt an unfamiliar vehicle technology, particularly when the technology has a
458 substantial upfront cost premium relative to conventional options. Ethanol demand is limited in
459 the short term by the fraction of flex-fuel vehicles that can be added to the fleet, but we expect
460 that, because of the maturity and relatively low cost of flex-fuel technology, its use in new
461 vehicles could be expanded if manufacturers perceived a growing demand.

462

463 Analysis reveals that cellulosic ethanol can play a significant role in achieving GHG emissions
464 reductions, even when limited to herbaceous crop residues or derived primarily from biomass

465 crops grown on CRP and low-value cropland. When growth in cellulosic ethanol production is
466 combined with declining production rates of ethanol from corn grain, fuel ethanol production
467 could reach the US average flex-fuel blend wall of 80% of total gasoline/ethanol needs for
468 passenger cars. However, cellulosic ethanol production in our scenario only meets one quarter of
469 the 2022 mandate of 16 billion gallons established in US Renewable Fuel Standard.

470

471 Another important finding is the degree to which electricity generation will determine the
472 magnitude of achievable GHG emissions cuts in the transportation sector. Vehicle charging
473 profiles can change significantly depending on when drivers choose to plug their vehicles in, and
474 that timing will determine whether PHEVs will take advantage of excess generating capacity at
475 night or steepen daytime peak demand.⁵⁴ The load profile in turn determines the type of
476 electricity likely to satisfy vehicle charging needs.⁴⁰ If additional power for PHEVs can be
477 generated using only renewables, the carbon-intensity of passenger transportation could be
478 reduced by an additional 35% in 2050 relative to 2013.

479

480 A key message conveyed by these results is that, although PHEV adoption and increased
481 production of cellulosic ethanol can reduce the carbon intensity of passenger vehicle
482 transportation, per-capita VKT is also important for its influence on the GHG footprint of
483 transportation. Our analysis predicts a 23% increase in per-capita VKT and comparable studies
484 have indicated even greater increases, although per-capita VKT must level off eventually.³¹
485 Mode switching and increasing vehicle occupancy through carpooling could help to stabilize or
486 reduce per-capita VKT. Combining behavioral changes with vehicle electrification, biofuels,

487 and electricity decarbonization will help to put an even lower-carbon passenger transportation
488 system within reach.

489
490

491 **Author Information**

492

493 Corresponding Author

494 *Email: cdscown@lbl.gov, Phone: (510) 486-4507, Fax: (510) 486-5928

495
496

Acknowledgment

497

498 Preparation of the biomass scenarios in this article was supported in part by the Energy
499 Biosciences Institute at the University of California, Berkeley. This work was carried out in part
500 at the Lawrence Berkeley National Laboratory, which is operated for the US Department of
501 Energy (DOE) under Contract Grant no. DE-AC03-76SF00098. We graciously acknowledge
502 Bradley Froehle for his assistance in constructing our fleet model for this paper.

503
504

Associated Content

505

506 A detailed description of data, sources, analytical methods, and tables with numerical results.
507 This material is available free of charge via the Internet at <http://pubs.acs.org>. Additional
508 spreadsheets and documentation are available for download at www.cscown.com/supporting-information

509
510

511
512

References

513

- 514 (1) Davis, S. C.; Diegel, S. W.; Boundy, R. G. *Transportation Energy Data Book, Edition 31*;
515 ORNL-6987; Oak Ridge National Laboratory: Oak Ridge, TN, 2012 (accessed March 27,
516 2013). http://cta.ornl.gov/data/tedb31/Edition31_Full_Doc.pdf.
- 517 (2) *Inventory of U.S. Greenhouse Gas Emissions and Sinks*; EPA 430-R-12-001; U.S.
518 Environmental Protection Agency: 2012 (accessed March 27, 2013).
519 <http://www.epa.gov/climatechange/Downloads/ghgemissions/US-GHG-Inventory-2012-Main-Text.pdf>.
- 520 (3) Williams, J. H.; DeBenedictis, A.; Ghanadan, R.; Mohone, A.; Moore, J.; III, W. R. M.;
521 Price, S.; Torn, M. S., The technology path to deep greenhouse gas emissions cuts by 2050:
522 The pivotal role of electricity. *Science* **2011**, *335* (6064), 53-59.
- 523 (4) Pacala, S.; Socolow, R., Stabilization wedges: Solving the climate problem for the next 50
524 years with current technologies. *Science* **2004**, *305* (5686), 968-972.
- 525 (5) Sager, J.; Apte, J. S.; Lemoine, D. M.; Kammen, D. M., Reduce growth rate of light-duty
526 vehicle travel to meet 2050 global climate goals. *Environ. Res. Lett.* **2011**, *6* (2).
- 527 (6) Scown, C. D.; Nazaroff, W. W.; Mishra, U.; Strogen, B.; Lobscheid, A. B.; Masanet, E.;
528 Santero, N. J.; Horvath, A.; McKone, T. E., Lifecycle greenhouse gas implications of US
529 national scenarios for cellulosic ethanol production. *Environ. Res. Lett.* **2012**, *7* (1),

531 014011.

532 (7) Jacobson, M. Z.; Delucchi, M. A., Providing all global energy with wind, water, and solar
533 power, Part I: Technologies, energy resources, quantities and areas of infrastructure, and
534 materials. *Energy Policy* **2011**, 39 (3), 1154-1169.

535 (8) Leighty, W.; Ogden, J. M.; Yang, C., Modeling transitions in the California light-duty
536 vehicles sector to achieve deep reductions in transportation greenhouse gas emissions.
537 *Energy Policy* **2012**, 44, 52-67.

538 (9) Kromer, M. A.; Bandivadekar, A.; Evans, C., Long-term greenhouse gas emission and
539 petroleum reduction goals: Evolutionary pathways for the light-duty vehicle sector. *Energy*
540 **2010**, 35 (1), 387-397.

541 (10) McCollum, D.; Yang, C., Achieving deep reductions in US transport greenhouse gas
542 emissions: Scenario analysis and policy implications. *Energy Policy* **2009**, 37 (12), 5580-
543 5596.

544 (11) Yang, C.; McCollum, D.; McCarthy, R.; Leighty, W., Meeting an 80% reduction in
545 greenhouse gas emissions from transportation by 2050: A case study in California. *Transp.*
546 *Res. Part D: Transport and Environment* **2009**, 14 (3), 147-156.

547 (12) Yeh, S.; Farrell, A.; Plevin, R.; Sanstad, A.; Weyant, J., Optimizing US mitigation
548 strategies for the light-duty transportation sector: What we learn from a bottom-up model.
549 *Environ. Sci. Technol.* **2008**, 42 (22), 8202-8210.

550 (13) Chapin, D. M.; Brodd, R.; Cowger, G.; Decicco, J. M.; Eads, G. C.; Espino, R.; German, J.
551 M.; Greene, D. L.; Greenwald, J.; Hegedus, L. L.; Heywood, J.; McConnell, V.;
552 McGovern, S. J.; Namanich, G.; O'Dell, J.; Sawyer, R. F.; Sloane, C. S.; William H Walsh,
553 J.; Webber, M. E., *Transitions to Alternative Vehicles and Fuels*. The National Academies
554 Press: Washington, DC, 2013.

555 (14) Rajagopal, D.; Sexton, S. E.; Roland-Holst, D.; Zilberman, D., Challenge of biofuel: Filling
556 the tank without emptying the stomach? *Environ. Res. Lett.* **2007**, 2 (4), 044004.

557 (15) Somerville, C.; Youngs, H.; Taylor, C.; Davis, S. C.; Long, S. P., Feedstocks for
558 lignocellulosic biofuels. *Science* **2010**, 329 (5993), 790-792.

559 (16) Anbarasan, P.; Baer, Z. C.; Sreekumar, S.; Gross, E.; Binder, J. B.; Blanch, H. W.; Clark,
560 D. S.; Toste, F. D., Integration of chemical catalysis with extractive fermentation to
561 produce fuels. *Nature* **2012**, 491 (7423), 235-239.

562 (17) *E15 Retailer Handbook*; Renewable Fuels Association: Washington, DC, 2012 (accessed
563 March 27, 2013). http://ethanolrfa.3cdn.net/11bb6763e853b9e471_izm62udch.pdf.

564 (18) *Public Policy Agenda for the 112th Congress*; Global Automakers: Washington, DC, 2011
565 (accessed November 10, 2012). <http://www.globalautomakers.org/public-policy-agenda>.

566 (19) Isidore, C. *Pickups powered by natural gas and gasoline*; CNN Money: 2012 (accessed
567 March 27, 2013). http://money.cnn.com/2012/03/05/autos/natural_gas_pickups/index.htm.

568 (20) Offer, G. J.; Howey, D.; Contestabile, M.; Clague, R.; Brandon, N. P., Comparative
569 analysis of battery electric, hydrogen fuel cell and hybrid vehicles in a future sustainable
570 road transport system. *Energy Policy* **2010**, 38 (1), 24-29.

571 (21) *Annual Energy Outlook 2010*; DOE/EIA-0383(2010); U.S. Department of Energy, Energy
572 Information Administration: Washington, DC, 2010 (accessed November 3, 2012).
573 <http://www.eia.doe.gov/oiaf/aeo/index.html>.

574 (22) *2012 National Population Projections*; United States Census Bureau: Washington, DC,
575 2012 (accessed March 27, 2013).
576 <http://www.census.gov/population/projections/data/national/2012.html>.

577 (23) Zarnoch, S. J.; Cordell, H. K.; Betz, C. J.; Langner, L. *Projecting county-level populations*
 578 *under three future scenarios: A technical document supporting the Forest Service 2010*
 579 *RPA Assessment*; SRS-128; U.S. Department of Agriculture Forest Service: Asheville, NC,
 580 2010 (accessed March 27, 2013). <http://www.srs.fs.fed.us/pubs/gtr/srs128.pdf>.

581 (24) *National Transportation Statistics*; US Department of Transportation: Washington, DC,
 582 2011 (accessed March 27, 2013).
http://www.rita.dot.gov/bts/sites/rita.dot.gov.bts/files/publications/national_transportation_statistics/index.html.

585 (25) *Annual Energy Outlook 2012*; US Energy Information Administration: Washington, DC,
 586 2012 (accessed December 12, 2012).
<http://www.eia.gov/forecasts/archive/aoe12/index.cfm>.

588 (26) Greene, D. L.; Goeltz, R.; Hopson, J.; Tworek, E., Analysis of in-use fuel economy
 589 shortfall by means of voluntarily reported fuel economy estimates. *Transp. Res. Rec.* **2006**,
 590 1983, 99-105.

591 (27) Karplus, V. J.; Paltsev, S.; Reilly, J. M., Prospects for plug-in hybrid electric vehicles in the
 592 United States and Japan: A general equilibrium analysis. *Transp. Res. Part A: Policy and*
 593 *Practice* **2010**, 44 (8), 620-641.

594 (28) Sullivan, J. L.; Salmeen, I. T.; Simon, C. P. *PHEV Marketplace Penetration: An Agent*
 595 *Based Simulation*; UMTRI-2009-32; University of Michigan Transportation Research
 596 Institute: Ann Arbor, MI, 2009 (accessed March 27, 2013).
<http://deepblue.lib.umich.edu/bitstream/2027.42/63507/1/102307.pdf>.

598 (29) *Environmental Assessment of Plug-In Hybrid Electric Vehicles*; 1015325; Electric Power
 599 Research Institute: Palo Alto, CA, 2007 (accessed March 27, 2013).
<http://mydocs.epri.com/docs/public/000000000001015325.pdf>.

601 (30) Diamond, D., The impact of government incentives for hybrid-electric vehicles: Evidence
 602 from US states. *Energy Policy* **2009**, 37 (3), 972-983.

603 (31) McCollum, D.; Yang, C.; Yeh, S.; Ogden, J., Deep greenhouse gas reduction scenarios for
 604 California — Strategic implications from the CA-TIMES energy-economic systems model.
Energy Strategy Rev. **2012**, 1 (1), 19-32.

606 (32) Perlack, R. D.; Stokes, B. J. *U.S. Billion-Ton Update: Biomass Supply for a Bioenergy and*
 607 *Bioproducts Industry*; ORNL/TM-2011/224; Oak Ridge National Laboratory: Oak Ridge,
 608 TN, 2011 (accessed March 27, 2013).
www1.eere.energy.gov/biomass/pdfs/billion_ton_update.pdf.

610 (33) Khanna, M.; Dhungana, B.; Clifton-Brown, J., Costs of producing Miscanthus and
 611 switchgrass for bioenergy in Illinois. *Biomass and Bioenergy* **2008**, 32 (6), 482-493.

612 (34) *Strategic Development of Bioenergy in the Western States: Development of Supply*
 613 *Scenarios Linked to Policy Recommendations*; U.S. Department of Energy, U.S.
 614 Department of Agriculture: Washington, DC, 2008 (accessed March 27, 2013).
http://www.arb.ca.gov/fuels/lcfs/062708wga_ucd.pdf.

616 (35) Strogen, B.; Horvath, A.; McKone, T. E., Fuel miles and the blend wall: Costs and
 617 emissions from ethanol distribution in the United States. *Environ. Sci. Technol.* **2012**, 46
 618 (10), 5285-5293.

619 (36) Farrell, A. E.; Plevin, R. J.; Turner, B. T.; Jones, A. D.; O'Hare, M.; Kammen, D. M.,
 620 Ethanol can contribute to energy and environmental goals. *Science* **2006**, 311 (5760), 506-
 621 508.

622 (37) Weber, C. L.; Jaramillo, P.; Marriott, J.; Samaras, C., Life cycle assessment and grid

electricity: What do we know and what can we know? *Environ. Sci. Technol.* **2010**, *44* (6), 1895-1901.

(38) *GREET1_2012 Fuel Cycle Model*; Argonne National Laboratory: Argonne, IL, 2012 (accessed March 27, 2013). <http://greet.es.anl.gov/>.

(39) Brandt, A. R.; Farrell, A. E., Scraping the bottom of the barrel: Greenhouse gas emission consequences of a transition to low-quality and synthetic petroleum resources. *Clim. Change* **2007**, *84* (3), 241-263.

(40) Samaras, C.; Meisterling, K., Life cycle assessment of greenhouse gas emissions from plug-in hybrid vehicles: Implications for policy. *Environ. Sci. Technol.* **2008**, *42* (9), 3170-3176.

(41) McKone, T. E.; Nazaroff, W. W.; Berck, P.; Auffhammer, M.; Lipman, T.; Torn, M. S.; Masanet, E.; Lobscheid, A.; Santero, N.; Mishra, U.; Barrett, A.; Bomberg, M.; Fingerman, K.; Scown, C.; Strogen, B.; Horvath, A., Grand challenges for life-cycle assessment of biofuels. *Environ. Sci. Technol.* **2011**, *45* (5), 1751-1756.

(42) Venkatesh, A.; Jaramillo, P.; Griffin, W. M.; Matthews, H. S., Implications of near-term coal power plant retirement for SO₂ and NO_x and life cycle GHG implications. *Environ. Sci. Technol.* **2012**, *46* (18), 9838-9845.

(43) Venkatesh, A.; Jaramillo, P.; Griffin, W. M.; Matthews, H. S., Implications of changing natural gas prices in the United States electricity sector for SO₂, NO_x and life cycle GHG emissions. *Environ. Res. Lett.* **2012**, *7* (3), 034018.

(44) Pacca, S.; Horvath, A., Greenhouse gas emissions from building and operating electric power plants in the Upper Colorado River Basin. *Environ. Sci. Technol.* **2002**, *36* (14), 3194-3200.

(45) Wang, M.; Huo, H.; Arora, S., Methods of dealing with co-products of biofuels in life-cycle analysis and consequent results within the U.S. context. *Energy Policy* **2010**.

(46) *ISO 14044: Environmental Management - Life Cycle Assessment - Requirements and Guidelines*; International Organization for Standardization: Geneva, Switzerland, 2006.

(47) Humbird, D.; Davis, R.; Tao, L.; Kinchin, C.; Hsu, D.; Aden, A.; Schoen, P.; Lukas, J.; Olthof, B.; Worley, M.; Sexton, D.; Dudgeon, D. *Process Design and Economics for Biochemical Conversion of Lignocellulosic Biomass to Ethanol*; NREL/TP-5100-47764; National Renewable Energy Laboratory: Golden, CO, 2011 (accessed March 27, 2013). <http://www.nrel.gov/docs/fy11osti/47764.pdf>.

(48) Lopez, A.; Roberts, B.; Heimiller, D.; Blair, N.; Porro, G. *U.S. Renewable Energy Technical Potentials: A GIS-Based Analysis*; NREL/TP-6A20-51946; National Renewable Energy Laboratory: Golden, CO, 2012 (accessed March 27, 2013). <http://www.nrel.gov/docs/fy12osti/51946.pdf>.

(49) Odum, E. P., The strategy of ecosystem development. *Science* **1969**, *164* (3877), 262-270.

(50) Johnson, M. G., The role of soil management in sequestering soil carbon. In *Soil Management and Greenhouse Effect*; Lal, R., Ed.; Lewis Publishers: Boca Raton, FL, 1995; pp 351-363.

(51) Watson, R. T.; Noble, I. R.; Bolin, B.; Ravindranath, N. H.; Verardo, D. J.; Dokken, D. J. *Land Use, Land-Use Change and Forestry*; Intergovernmental Panel on Climate Change: Geneva, Switzerland, 2000.

(52) Cohon, J. L.; Cropper, M. L.; Cullen, M. R.; Drake, E. M.; English, M. R.; Field, C. B.; Greenbaum, D. D.; Hammitt, J. K.; Henderson, R. F.; Kling, C. L.; Krupnick, A. J.; Lee, R.; Matthews, H. S.; McKone, T. E.; Metcalf, G. E.; Newell, R. G.; Revessz, R. L.; Wing, I.

669 S.; Surles, T. G. *Hidden Costs of Energy: Unpriced Consequences of Energy Production*
670 and Use; 978-0-309-14640-1; National Academies Press: Washington, DC, 2010.

671 (53) Scown, C. D.; Horvath, A.; McKone, T. E., Water footprint of U.S. transportation fuels.
672 *Environ. Sci. Technol.* **2011**, *45* (7), 2541–2553.

673 (54) Lemoine, D. M.; Plevin, R. J.; Cohn, A. S.; Jones, A. D.; Brandt, A. R.; Vergara, S. E.;
674 Kammen, D. M., The climate impacts of bioenergy systems depend on market and
675 regulatory policy contexts. *Environ. Sci. Technol.* **2010**, *44* (19), 7347-7350.

676

677